Aggregation of PolyQ Proteins Is Increased upon Yeast Aging and Affected by Sir2 and Hsf1: Novel Quantitative Biochemical and Microscopic Assays
نویسندگان
چکیده
Aging-related neurodegenerative disorders, such as Parkinson's, Alzheimer's and Huntington's diseases, are characterized by accumulation of protein aggregates in distinct neuronal cells that eventually die. In Huntington's disease, the protein huntingtin forms aggregates, and the age of disease onset is inversely correlated to the length of the protein's poly-glutamine tract. Using quantitative assays to estimate microscopically and capture biochemically protein aggregates, here we study in Saccharomyces cerevisiae aging-related aggregation of GFP-tagged, huntingtin-derived proteins with different polyQ lengths. We find that the short 25Q protein never aggregates whereas the long 103Q version always aggregates. However, the mid-size 47Q protein is soluble in young logarithmically growing yeast but aggregates as the yeast cells enter the stationary phase and age, allowing us to plot an "aggregation timeline". This aging-dependent aggregation was associated with increased cytotoxicity. We also show that two aging-related genes, SIR2 and HSF1, affect aggregation of the polyQ proteins. In Δsir2 strain the aging-dependent aggregation of the 47Q protein is aggravated, while overexpression of the transcription factor Hsf1 attenuates aggregation. Thus, the mid-size 47Q protein and our quantitative aggregation assays provide valuable tools to unravel the roles of genes and environmental conditions that affect aging-related aggregation.
منابع مشابه
Deteriorated Stress Response in Stationary-Phase Yeast: Sir2 and Yap1 Are Essential for Hsf1 Activation by Heat Shock and Oxidative Stress, Respectively
Stationary-phase cultures have been used as an important model of aging, a complex process involving multiple pathways and signaling networks. However, the molecular processes underlying stress response of non-dividing cells are poorly understood, although deteriorated stress response is one of the hallmarks of aging. The budding yeast Saccharomyces cerevisiae is a valuable model organism to st...
متن کاملHeat shock factor 1 ameliorates proteotoxicity in cooperation with the transcription factor NFAT.
Heat shock transcription factor 1 (HSF1) is an important regulator of protein homeostasis (proteostasis) by controlling the expression of major heat shock proteins (Hsps) that facilitate protein folding. However, it is unclear whether other proteostasis pathways are mediated by HSF1. Here, we identified novel targets of HSF1 in mammalian cells, which suppress the aggregation of polyglutamine (p...
متن کاملAggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins.
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by polyglutamine (polyQ) expansions in the huntingtin (Ht) protein. A hallmark of HD is the proteolytic production of an N-terminal fragment of Ht, containing the polyQ repeat, that forms aggregates in the nucleus and cytoplasm of affected neurons. Proteins with longer polyQ repeats aggregate more rapidly and cause dise...
متن کاملTargeting Misfolded Proteins to Fight Neurodegenerative Diseases
With the assistance of proteins called chaperones, newly translated proteins fold into the three-dimensional shapes that are critical to their function. When proteins fold abnormally or become unstable, the consequences can be dire for cells, particularly neurons, which are exquisitely sensitive to the accumulation of misfolded proteins. Many neurodegenerative diseases, like Parkinson’s and Cre...
متن کاملNon-Hsp genes are essential for HSF1-mediated maintenance of whole body homeostasis
Mammalian tissues are always exposed to diverse threats from pathological conditions and aging. Therefore, the molecular systems that protect the cells from these threats are indispensable for cell survival. A variety of diseases, including neurodegenerative diseases, cause intracellular damage and disturb homeostasis. Heat shock transcription factor 1 (HSF1) positively regulates heat shock pro...
متن کامل